A Robust Mathematical Formulation for Studying Elastically Coupled Motor-Cargo Systems

نویسنده

  • Hongyun Wang
چکیده

Molecular motors are small, and, as a result, motor operation is dominated by high viscous friction and large thermal fluctuations from the surrounding fluid environment. The small size has made it very difficult to study the physical mechanisms of molecular motors. It is already difficult enough to see the motor itself, let alone to control the motor directly by applying an external force. In many single molecule experiments and when carrying out its biological functions, a molecular motor may be coupled elastically to a cargo that is much bigger than the motor itself. Fortunately, current experimental technologies allow us to measure the external force acting on the cargo and the position of the cargo with the precision of piconewtons and nanometers. It is not clear, however, whether the measured force and position can be simply treated as the force acting on the motor and the position of the motor itself. Thus, to interpret correctly the experimental results, we need to study the behaviors of not just the motor itself but also the elastically coupled motor-cargo systems. To facilitate the modeling study of motor-cargo systems, we must develop the corresponding numerical capability for solving the modeling equations. In this study, we develop a robust mathematical/numerical formulation for simulating elastically coupled motor-cargo systems for the full range of elasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of organelles by elastically coupled motor proteins.

Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by i...

متن کامل

Flow-Induced Instability Smart Control of Elastically Coupled Double-Nanotube-Systems

Flow induced vibration and smart control of elastically coupled double-nanotube-systems (CDNTSs) are investigated based on Eringen’s nonlocal elasticity theory and Euler-Bernoulli beam model. The CDNTS is considered to be composed of Carbon Nanotube (CNT) and Boron-Nitride Nanotube (BNNT) which are attached by Pasternak media. The BNNT is subjected to an applied voltage in the axial direction w...

متن کامل

Synchronization of elastically coupled processive molecular motors and regulation of cargo transport.

The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from...

متن کامل

Stokes Efficiency of Molecular Motor-Cargo Systems

A molecular motor utilizes chemical free energy to generate a unidirectional motion through the viscous fluid. In many experimental settings and biological settings, a molecular motor is elastically linked to a cargo. The stochastic motion of a molecular motor-cargo system is governed by a set of Langevin equations, each corresponding to an individual chemical occupancy state. The change of che...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006